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We present a new graph-theoretical method for calculating the dynamical and statis-
tical properties of a Gaussian chain with various molecular architecture. The characteris-
tic polynomial for its line graph, which has the bonds of a molecular graph as its beads
with adjacency of bonds as in the graph, makes it possible to provide us with the gen-
eral equation for calculating the radius of gyration of Gaussian chains and their relaxation
spectra.

1. Introduction

The Gaussian chains have played a central role in studies on the statistics and
dynamics of flexible chain molecules. A Gaussian chain is a molecule represented
as a collection of beads being linked together with Hookean springs. According to
the central limit theorem in statistical physics, the random-flight statistics of a flexible
polymer can be described by a Gaussian chain which is mathematically simpler to
handle [13,16]. Rouse [32], Bueche [6], and Zimm [41] demonstrated that the dynamics
of dilute solution of linear polymers can be characterized by considering a Gaussian
chain suspended in a flowing viscous liquid. Subsequently, the application of this
model to any branched molecule was made by Ham [18] and Zimm and Kilb [42].

The mathematical representation of the graph theory enables us to generalize
the statistics and dynamics of Gaussian chains to include any type of branching [12].
Recently, application of concepts of the graph theory to polymer chemistry has been
increasing [4,10,14,25,28]. In this work, we present a graph-theoretical method for
calculating high-order moments of the radius of gyration and relaxation spectra of flex-
ible chain molecules with any type of branching. The central feature of this approach
lies in the statistics and dynamics of chain molecules being reformulated into a more
convenient algebraic form.
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2. Chain dynamics

In this work, we adopt any branched Gaussian chain containing no loops or circles
with N beads and N − 1 segments acting as Hookean springs. Let the spring constant
of the bond be dkT/b2, where k is the Boltzmann constant, T is the temperature,
d is the space dimension, and b is the effective bond length. A Gaussian chain model
for a branched molecule is presented in figure 1(a). Considering a Gaussian chain
suspended in a flow liquid, the motion equation is given by

−ζ0ṙ =
dkT

b2 Zr, (1)

where r is a d ×N matrix whose rows contain the dimensional component of the N
position vectors of beads, ṙ is the time derivative of r, ζ0 is the friction constant of
the beads, and Z is the N ×N connectivity matrix which is called the Zimm matrix
in the polymer physics [41] and is known as the Kirchhoff matrix [26] in the graph
theory. According to the Rouse theory [32], equation (1) can be rewritten in terms of
bond vectors bi = ri+1 − ri as

−ζ0ḃ =
dkT

b2 Rb, (2)

where b is a d× (N−1) matrix whose rows contain the dimensional component of the
N −1 bond vectors. The matrix R is the (N −1)× (N −1) connectivity matrix which
is called the Rouse matrix [32]. Denoting by Φ(A;λ) the characteristic polynomial
Det|A− λE| of a matrix A, where E is the identity matrix, we can find the following
relation:

Φ(Z;λ) = λΦ(R;λ). (3)

The eigenvalues of Z contain one zero eigenvalue and, hence, do not possess an
ordinary inverse. Equation (3) shows that the non-zero eigenvalues of Z are identical
with those of R. The zero eigenvalue of Z represents the mode of chain translation [17].
The springs and beads are assigned in any arbitrary fashion, for example, as shown
in figure 1(a), so that the entries of connectivity matrices Z and R are dependent
on how the springs and beads are numbered. However, the eigenvalues of Z and R
are independent of how their elements are numbered [12,14,20]. Each eigenvalue λi
(i = 1, 2, . . . ,N−1) of R or non-zero eigenvalue of Z is associated with the relaxation
times τi of the ith mode [7,29]:

τi =
ζ0b

2

2dkT
λ−1
i . (4)

In the graph theory, a chain molecule is represented as an ordinary graph G, in
which a bead (or vertex) and a segment bond (or edge) are arbitrarily numbered, and a
digraph D, in which each edge of the graph G is arbitrarily directed, as exemplified in
figure 1(b) and (c). The adjacency matrix A of the graph G or the digraph D has been
useful for characterizing and encoding the skeletal structure of molecules [9,24,35,37].
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(a) (b)

(c) (d)

Figure 1. Representation of a flexible randomly coiled chain by (a) the bead–spring model (Gaussian
chain model); (b) the ordinary graph; (c) the digraph; (d) the line graph. The beads and springs, lines,

or arrows are arbitrarily assigned. The line graph (d) is transformed from the graph (c).

The entry in the i, j cell of A is 1 if there is an edge (or directed line) of G (or D)
from a vertex i to a vertex j, and this entry is 0 otherwise [5,20].

The Zimm matrix Z or the Rouse matrix R can also be constructed in a different
manner by making use of the incident matrix of a digraph D. The elements of the
incident matrix B = (bij) of a digraph are defined by [5,20]

bij =

{
+1 if edge j starts from vertex i,
−1 if edge j terminates in vertex i,
0 otherwise.

(5)

According to Forsman [12], Z and R are given by

Z = BBT (6)

and

R = BTB, (7)

where the superscript “T” indicates the transpose of a matrix.
Now we consider an incidence matrix C of the molecular (undirected) graph G

with elements of C = (cij) given by [5,20]

cij =
{

+1 if edge j is connected with vertex i,
0 otherwise.

(8)
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Introducing a connectivity matrix K formed by

K = CTC, (9)

we can derive the following relation as shown in appendix A:

Φ(R;λ) = Φ(K;λ). (10)

It should be noted that all elements of K are the absolute values of those of R.
Furthermore, according to a theorem in the graph theory, the following relation has
the form for tree graphs [5]:

K = AL + 2E, (11)

where AL is the adjacency matrix for the line graph L(G)1 of G. The elements of AL

are given by [5,36]

aij =
{

+1 if edge j is connected with edge i,
0 otherwise.

(12)

An example of the line graph is shown in figure 1(d).
As can be seen from equation (4), the relaxation spectrum of a Gaussian chain can

be determined from the eigenvalue spectrum of the Rouse matrix R. A combination
of equations (10) and (11) gives

Φ(R;λ) = Φ(AL;λ− 2). (13)

Consequently, the eigenvalues λi of R can be related to the eigenvalues µi of AL as
follows:

λi = µi + 2. (14)

Remembering equation (4), we get

τi =
ζ0b

2

2dkT
(µi + 2)−1. (15)

It follows that the relaxation spectrum of a chain molecule is determined entirely by
the set of eigenvalues of the adjacency matrix AL of its line graph.

3. Chain statistics

The potential energy of the chain molecule can be written as

V =
dkT

2b2 Tr
[
rZrT], (16)

1 The line graph L(G) of G is the graph having one vertex corresponding to each edge of G and such
that two vertices of L(G) are joined if and only if the corresponding edges of G are incident.
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where Tr denotes the trace of a matrix. Fixman [11] showed that the distribution
function of the square radius of gyration S2 is given by

P
(
S2) ∝ ∫ δ

(
S2 −N−1 Tr

(
rrT))e−V/kT dr, (17)

where δ(x) is a Dirac delta function. Introducing a Laplace transform of P (S2) with
respect to S2, we obtain

L
[
P
(
S2)] =

∫ ∞
0

e−zS
2
P
(
S2) dS2 = ϕ(z)−d/2 (18)

and

ϕ(z) = Det
∣∣E + γzR−1

∣∣, (19)

where γ = 2b2/(dN ). Details of the precise derivation of equation (18) are presented in
appendix B. The Laplace transform of P (S2), i.e., the generating function of P (S2),
provides the average 〈e−zS2〉 and, therefore, the average of powers of S2 can be
computed by making use of the expansion in the form of a power series in z. Thus
we have 〈

S2n〉 = (−1)n
∂n

∂zn
ϕ(z)−d/2

∣∣∣∣
z→0

. (20)

Since we have Det |R| = N for any tree graph as shown in appendix A, equation (19)
can be rewritten as

ϕ(z) =
1
N

Det|R + γzE| = 1
N

Φ(R;−γz). (21)

Using equation (13), we have

ϕ(z) =
1
N

Det
∣∣AL + (γz + 2)E

∣∣ =
1
N

Φ(AL;−γz − 2). (22)

It was shown that the characteristic polynomial of the line graph gives the general
equation for calculating the radius of gyration of a Gaussian chain with any type of
branching.

4. Applications

The coefficient of z in the characteristic polynomial φ(z) can be related to a
topological index [3], i.e., the Wiener index [40] of the molecular graph G, i.e., a
total sum of the elements of its distance matrix [5], which is potentially useful in the
correlation of molecular topology to thermodynamic properties for alkanes. Therefore,
any high-order coefficient in φ(z) for a tree-like graph, or any coefficient of the charac-
teristic polynomial for its line graph, has a potential to be a new topological index [24]
which can be related to other physical and chemical properties. In this section, the
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relationship between the characteristic polynomial and mechanical relaxation processes
is examined.

The characteristic polynomial φ(z) can be rewritten in terms of the N − 1 eigen-
values of the Rouse matrix as [11]

ϕ(z) =
N−1∏
i=1

(
1 +

γ

λi
z

)
. (23)

Making use of the relation

lnϕ(z) =
N−1∑
i=1

ln

(
1 +

γ

λi
z

)
=

N−1∑
i=1

[
γ

λi
z − 1

2

(
γ

λi

)2

z2 +
1
3

(
γ

λi

)3

z3 − · · ·
]

, (24)

the sums of reciprocal powers of the eigenvalues are easily determined from the fol-
lowing equation:

(n− 1)!
N−1∑
i=1

(
γ

λi

)n
= (−1)n−1 ∂

n

∂zn
lnϕ(z)

∣∣∣∣
z→0

. (25)

Using equation (4), we have

N−1∑
i=1

τni =
(−1)n−1

(n− 1)!

(
Nζ0

4kT

)n ∂n
∂zn

lnϕ(z)

∣∣∣∣
z→0

. (26)

According to the theory of linear viscoelasticity [15], the relaxation spectrum,
H(τ ), is given by

H(τ ) =
ckT

N

N−1∑
i=1

δ(ln τ − ln τi), (27)

where c is the concentration of beads per unit volume. Then the zero-shear-rate
viscosity η0 and the steady-state compliance J0

e , a measure of the elastic energy stored
under steady flow, are

η0 =
ckT

N

N−1∑
i=1

τi, J0
e =

N

ckT

(
N−1∑
i=1

τ 2
i

/(
N−1∑
i=1

τi

)2)
. (28)

Consequently, the expressions for these two fundamental viscoelastic properties can
be derived from equation (26):

η0 =
cζ0

4
ϕ̇0, (29)

J0
e =

N

ckT

(
1− ϕ̈0

ϕ̇2
0

)
, (30)
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where the suffix 0 indicates the limiting values when z → 0. It was shown that
these rheological parameters of any branched polymer can be computed from the
characteristic polynomial of its line graph.

5. Remarks

In the graph theory, the adjacency matrix is an important device for characterizing
the topological feature of graphs, and the algebraic properties of the characteristic
polynomials have been extensively examined [2,19,30,33,38]. In this work, we have
established the relation between the graph theory and the Rouse theory. Thus, the
problems of the dynamics and statistics of a tree-shaped molecule were found to be
completely reduced to the eigenvalue problem of the adjacency matrix of its line
graph L(G). This suggests that various ideas and concepts thus obtained from the
graph theory can be introduced directly to polymer physics and chemistry through the
use of the adjacency matrix of the line graph.

The significance of the present graph-theoretical approach is to provide the gen-
eral equations for the relaxation spectrum and the radius of gyration of any tree-like
chain. In particular, it is noteworthy that the mathematical method has the potential to
provide an algorithmic way to calculate high-order moments of the radius of gyration
and the relaxation time for any tree-like chain. These values can be hardly calculated
from the usual statistical methods because of a great difficulty in the numeration of
the distribution function.

So far, the characteristic polynomial of the adjacency matrix of the graph G
has been considered to be capable of expressing the physical and chemical behaviors
for any molecule. Particular interest, therefore, has been focused on the existence of
isospectral tree graphs since a pioneering work by Collatz and Sinogowitz [8]. The
isospectral graphs [1,2,8,21–23,27,30,31,34] are topologically nonidentical (or isomor-
phic2) graphs whose nonidentical adjacency matrices give an identical polynomial and
an identical set of eigenvalues. It has been long identified that the graph-theoretical
statement that some molecules have isospectral mates presents a difficulty in discrim-
inating their topological structure.

The present result strongly suggests that the adjacency matrix of their line graph
L(G) plays an important role in the correlations of topological structure to fundamental
properties based on molecular dynamics and statistics such as linear rheological para-
meters and mechanical relaxation behavior. These properties for tree-shaped molecules
can be characterized not by the adjacency matrix of their ordinal graph G but by that of
their line graph L(G). Consequently, the condition of determining whether the skeletal
structure of highly branched chains can be uniquely determined from the relaxation

2 Two graphs are isomorphic if there exists between their vertex sets a one-to-one correspondence having
the property that, whenever two vertices are adjacent in either graph, the corresponding two vertices
are adjacent in the other graph.
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spectrum or not can be examined not by the existence of the isospectral graphs but by
the existence of the isospectral line graphs.

Appendix A

Before going to the main subject, we prove the following relationship:

Φ(RN ;λ) = (2− λ)Φ(RN−1;λ)−Φ(RN−2;λ), (A.1)

where RN is the Rouse matrix of a tree-like chain with N vertices. Any tree digraph
DN of order N is constructed from one vertex being connected with a vertex in
DN−1 by a directed edge (see figure 2). Before each step, the vertices and edges are
renumbered, if necessary, so that the directed edge to be connected has its origin at
the highest-numbered vertex. This ensures that the last row and the last column of
RN have an element −1 in their penultimate, +2 in the last, and empty in the other
positions as follows:

. (A.2)

The renumbering process is independent of the characteristic polynomial because it
merely induces the same permutation in both the row-set and column-set of the deter-
minant. Expanding Det |RN − λEN by its last column and row, we obtain

Det|RN −λEN | = (2− λ) Det|RN−1− λEN−1| − (−1)2 Det|RN−2−λEN−2|. (A.3)

This indicates that equation (A.1) is true for all positive integers N . Also, setting
λ = 0 in equation (A.3), we have Det|RN | = N [14].

Figure 2. A tree digraph constructed by N th stepwise.
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Using the same type of arguments, it can be shown that the matrix KN can be
written as

. (A.4)

Similarly, we have

Φ(KN ;λ) = (2− λ)Φ(KN−1;λ)−Φ(KN−2;λ). (A.5)

Let us return to the proof of the following proposition:

Φ(RN ;λ) = Φ(KN ;λ). (A.6)

The proposition is certainly true for tree-like graphs containing N = 1, 2, 3, 4, 5, i.e.,
Φ(R1;λ) = Φ(K1;λ), Φ(R2;λ) = Φ(K2;λ), Φ(R3;λ) = Φ(K3;λ), Φ(R4;λ) =
Φ(K4;λ), Φ(R5;λ) = Φ(K5;λ). Since we have equations (A.1) and (A.5), we can
conclude by induction that equation (A.6) is true for all positive integers N .

Appendix B

Let Z be the configuration partition function. The distribution function for S2

can be written as

P
(
S2) dS2 =

dS2

Z

∫
δ
(
S2 −N−1 Tr

(
rrT))e−(d/2b2) Tr(rZrT) dr, (B.1)

where

Z =

∫
e−(d/2b2) Tr(rZrT) dr.

The Fourier representation of the delta function gives [11]

P
(
S2) dS2 =

dS2

2π

∫ ∞
−∞

ρ(ik)eikS2
dk (B.2)

and

ρ(ik) = Z−1
∫

e−(d/2b2) Tr[r(Z+ik(2b2/dN )E)rT] dr, (B.3)

where i =
√
−1. The ρ(ik) becomes the Fourier transform of P (S2), i.e., the charac-

teristic function so that we have

P
(
S2) = F−1[ρ(ik)

]
. (B.4)
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Considering the transformation to normal coordinates, the integration in equation (B.3)
can be solved by making the use of equation (3) in the text; we obtain

ρ(ik) = Det

(
E + ik

2b2

d
R−1

)−d/2

≡ ϕ(ik)−d/2. (B.5)

Using the change of variable z = ik, equation (B.4) can be transformed to

P
(
S2) = L−1[ρ(z)

]
= L−1[ϕ(z)−d/2]. (B.6)
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